### Severe weather ecology: Global insights from localized chaos







Jeremy D. Ross Oklahoma Biological Survey University of Oklahoma





### Severe Weather

 Transient mesoclimate extremes linked to atmospheric processes



## Monitoring severe weather

- Radar
- Satellites
- Monitoring networks
- Models









The COMET Program / NO.





# Weather Effects on Populations



# Weather Effects on Populations

Unidirectional impacts: Hailstorms Hurricanes Ice Storm



Bi-directional conditions: Temperature Precipitation

#### **Factors affecting resistance to** wind/ice storms in woody plants

#### Tree form

- taper
- density
- crown shape
- rooting depth



Taper = 90%

70%



#### Flexibility vs. strength



#### Individual Effects of Severe Weather

Post-event reports of birds ...

- Taxed
- Injured

- Lost nests
- Killed



# Impacts likely to vary across species and individuals

#### Depending on:

 Adaptive behaviors, anatomy, or physiology

• Habitat usage

For example ...

Heat tolerance

- Escape or shielding behaviors
- → Nest placement

Age & Sex — Migratory arrival

• Body size

| Diamètre des grélons                                      | mm.<br>10 <sup>.</sup>  | 12.    | 14.    | 16 <sup>.</sup> | 18.    | 20.   | 30-                | 40-  | <del>5</del> 0 <sup>.</sup> | 60-  |
|-----------------------------------------------------------|-------------------------|--------|--------|-----------------|--------|-------|--------------------|------|-----------------------------|------|
| Poids des grêlons                                         | gr.<br>0.524            | 0.904  | 1.44   | 2.14            | 3.02   | 4.19  | 1 <sup>4-</sup> 19 | 33·5 | 65.2                        | 113. |
| Vitesse de chute des<br>grélons<br>en mètres par seconde  | m.<br>18 <sup>.</sup> 1 | 19-1   | 21.44  | 22.9            | 24.3   | 25.0  | 31.3               | 32.6 | 40*4                        | 44.3 |
| Force vive au choc<br>des grélous                         | k.<br>0 00873           | 0.0181 | 0.0335 | 0.0273          | 0-0917 | 0-140 | 0.708              | 2.24 | 5.46                        | 11.3 |
| Poids des animanx<br>assommés par la<br>chute des grèlons | k.<br>0∙061             | 0.127  | 0.734  | 0.400           | 0.624  | 0.980 | 1.82               | 15.7 | 38.                         | 79.  |

<u>Martin (1907)</u> Force to stun an animal = 1 kg⋅m of kinetic shock force per 7kg of body weight

Neil

## **Record Hailstones**



878g hailstone recovered near Vivian, SD on July 23, 2010 Weight of animal predicted to be stunned by record hailstone:

 $\succ$  No wind =

880kg – Mature bull Bison





## Severe Weather Exposure

- Can occur throughout life-cycle
- Potentially high-risk periods
  - Nesting ---> Amber Carver 4:15p Saturday
  - Molting
  - Winter roosting
  - Migratory stopover



#### Stopover Hotspot – Great Salt Lake

Minimum count of 7,370 Red-necked Phalarope (Phalaropus lobatus) 3-days after hailstorm





#### Photos: John Neill, Utah DWR

## Attributing Cause & Effect

- Studies of disaster impacts limited by:
  - After-the-fact data collection
  - Site access constraints
  - Unreplicable
  - Confounding covariates (e.g., debris, scavenging)
  - Non-randomization
  - Risks of pseudoreplication





#### Accidental Ecological Impacts: Methodological Approaches

Analyzing the Effects of Accidental Environmental Impacts: Approaches and Assumptions

John A. Wiens; Keith R. Parker

| Ecological Applications, V | /ol. 5, No. 4 (Nov., | , 1995), 1069-1083. |
|----------------------------|----------------------|---------------------|
|----------------------------|----------------------|---------------------|

|               |                  | Assessment of  |         | Exposure variable |            | Reference |          |  |
|---------------|------------------|----------------|---------|-------------------|------------|-----------|----------|--|
|               |                  | Recovery       |         |                   |            |           |          |  |
| Study design  |                  | Initial impact | process | Categorical       | Continuous | Spatial   | Temporal |  |
| Before-after  | Baseline         | ×              |         | ×                 |            |           | ×        |  |
|               | Pre/post pairs   | $\times$       |         | ×                 |            | $\times$  | $\times$ |  |
| Single-time   | Impact-reference | ×              |         | ×                 |            | ×         |          |  |
|               | Matched-pairs    | ×              |         | ×                 |            | ×         |          |  |
|               | Gradient         | ×              |         |                   | ×          | ×         |          |  |
| Multiple-time | Time-series      | ×              | ×       | ×                 |            |           | ×        |  |
|               | Level-by-time    | ×              | ×       | ×                 |            | ×         | ×        |  |
|               | Trend-by-time    | ×              | ×       |                   | ×          | ×         | ×        |  |

#### Accidental Ecological Impacts: Methodological Approaches

|               |                                               | Ν                           |                                               |                                          |                          |  |
|---------------|-----------------------------------------------|-----------------------------|-----------------------------------------------|------------------------------------------|--------------------------|--|
| Stu           | ıdy design                                    | Methods<br>consistent       | Covariance<br>analysis feasible<br>and useful | Exposure levels<br>adequately<br>sampled |                          |  |
| Before-after  | Baseline<br>Pre/post pairs                    | ×××                         |                                               |                                          |                          |  |
| Single-time   | Impact–reference<br>Matched-pairs<br>Gradient |                             | ×<br>×<br>×                                   | ×                                        | Wiens & Parker<br>(1995) |  |
| Multiple-time | Time-series<br>Level-by-time<br>Trend-by-time | ×<br>×<br>×                 | ×                                             | ×                                        |                          |  |
|               |                                               |                             |                                               |                                          |                          |  |
| Study design  |                                               | Steady-state<br>equilibrium | Dynamic<br>equilibrium                        | Factors equal                            | Paired sites<br>equal    |  |
| Before-after  | Baseline<br>Pre/post pairs                    | ×                           | ×                                             |                                          | ×                        |  |
| Single-time   | Impact–reference<br>Matched-pairs<br>Gradient |                             |                                               | ×<br>×                                   | ×                        |  |
| Multiple-time | Time-series<br>Level-by-time<br>Trend-by-time | ×                           | ×<br>×                                        |                                          |                          |  |

### Post-event Methods Flowchart



### Post-event Methods Flowchart



# A collective severe weather ecology monitoring network



#### Quantified severe weather correlates

- Radar
- Satellites
- Monitoring networks
- Models









The COMET Program / NC



# Extrapolating individual/population impacts to macroscales

• Resiliency under a changing climate





#### Acknowledgements

Aeroecology at OU



- Eli Bridge and Alice Boyle
- John Neill, Utah DWR
- Greg Stumph, Kiel Ortega, & others at the National Severe Storms Lab at OU
- Future collaborators?

